Introduction to PL/SQI_. (from a previous edition of our text)

10.5 Programming Oracle Applications

10.5 Programming Oracle Applications
Programming in Oracle is done in several ways: - o

* Writing interactive SQL queries in the SQL query mode.
* Writing programs in a host language like COBOL, C, or PASCAL, and embedding SQL

within the program. A precompiler such as PRO*OOBOL or PRO*C is used to link the
application to Oracle.

* Writing in PL/SQL, which is Oracle’s own procedural language.
* Using Oracle Call Interface (OCI) and the Oracle runtime library SQLLIB.

10.5.1 | Programming in PL/SQL

PL{SQL is Oracle’s procedural language extension to SQL. PLISQL offets software engineer-
ing features such as data encapsulation, information hiding, overloading, and exception
handling to the developers. It is the most heavily used technique for application develop-
ment in Oracle.

PL/SQL is a block-structured language. That is, the basic units-—procedures, functions
and anonymous blocks—that make up a PL/SQL program are logical blocks, which can
contain any number of nested subblacks. A block or subblock groups logically related dec-

larations and statements. The declarations are local to the block and cease to exist when

the block completes. As illustrated below, a PL/SOL block has three parts: (1) a declara-
tion part where variables and objects are declared, (2) an executable part where these
variables are manipulated, and (3) an exception part where exceptions or errors raised
during execution can be handled. ' -

[DECLARE
~--declarations]
BEGIN
-—--statements
[EXCEPTION '
-~~handlers .}

END ;

In the declaration part—which is optional—variables are declared. Variables can
have any SQL daca type as well as additional PL/SQL data types. Variables can also be
assigned values in this section. Objects are manipulated in the executable part, which is
the only required part. Here data can be processed using conditional, iterative, and
sequential flow-of-control statements such as IF-THEN-ELSE, FOR-LOOP, WHILE-LOOP,
EXIT-WHEN, and GO-TO. The exception part handles any error conditions. raised in the
executable part. The exception could be user-defined errors or database errors or excep-
tions. When an error or exception occurs, an exception is raised and the normal execu-
tion stops and control transfers to the exception-handling part of the PL/SQL block or
subprogram. ' '

337

S LT

i I .. ; -

Chapter 10 / Examples of Refational Database Management Systems

Suppose we want to write PL/SQL programs to process the database of Figure 7.5. Asa
first example, E1, we write a program segment that prints out some information about an
employee who has the highest salary as follows:

El:

DECLARE
v_Tname employee, fname%TYPE;
v_minit employee.minit%TYPE;

V_Tname employee. Tname%TYPE;
v.address employee.address¥TYPE;
v_salary employee.salary%TYPE;

BEGIN
SELECT fname, minit, 1name, address, salary
INTO v_fname, v.minit, v_lname, v_address . V_sSalary
FROM EMPLOYEE
WHERE salary = (select max (salary) from employee) ;

DBMS_OUTPUT.PUT_LINE (v_fname, v_minit, v_1 name, v_address,
: v_salary); -

EXCEPTION

WHEN OTHERS

DBMS_OUTPUT.PUT_LINE (‘Error Detected');
END;

In El, we need to declare program variables to match the types of the database
attributes that the program will process. These program variables may or may not have
names that are identical to their corresponding attributes. The %TYPE in each variable
declaration means that thac variable is of the same type as the corresponding column in
the table. DBMS_OUTPUT.PUT_LINE is PL{SQL’s print function. The error handling part
prints out an error message if Oracle detects an error—in this case, if mote than one
employee is selected—while executing the SQL. The program needs an INTO clause,
which specifies the program variables into which attribute values from the database are
retrieved.

In the next example, E2, we write a simple program to increase the salary of employ-
ees whose salasies are less than the average salary by 10 percent. The program recomputes
and prints out the average salary if it exceeds 50000 after the above update.

E2:
DECLARE
avg._salary NUMBER;

BEGIN
SELECT avg(salary) INTO avg_salary
FROM employee;

UPDATE employee
SET salary = salary*1.1

AR AT

iy B

gLy bt 8 g

:
|
.\
:
3
k1
3
3

Twaew PAM FrMnen Ty W WA ILP P R L

WHERE salary < avg_salary;

SELECT avg(salary) INTO avg_salary
FROM employee;

IF avg_salary > 50000 THEN
dbms_output.put_Tine (‘Average Salary is ‘ || avg_salary) :
END IF;

COMMIT;

EXCEPTION
WHEN OTHERS THEN
dbms_output.put_Tine (‘Error in Salary update)
ROLLBACK ;

END;

In EZ, avg_salary is defined as a variable and it gets the value of the average of the
employees’ salary from the first SELECT statement and this value is used to choose which
of the employees will have their salaries updated. The EXCEPTION part rolls back the
whole transacrion (that is, removes any effect of the transaction on the database) lf an
error of any type occurs during execution.

10.5.2 Cursors in PLfSQL

The set of rows returned by a query can consist of zero, on€, or multiple rows, depending
on how many rows meet the search criteria. When a query returns multiple rows, it is nec-
essary to explicitly declare a cursor to process the rows. A cursor is similar to a file variable
or file pointer, which points to a single row (tuple) from the result of 2 query. Cursors
should be declared in the declarative part and are controlled by three commands: OPEN,
FETCH, and CLOSE. The cursor is initialized with the OPEN statement, which executes the
quety, retrieves the resulting set of rows, and sets the cursor to a position before the first
row in the result of the query. This becomes the current row for the cursor. The FETCH
statement, when executed for the first time, retrieves the first row into the program vari-
ables and sets the cursor to point to that row. Subsequent executions of FETCH advance
the cursor to the next row in the result set, and retrieve that row into the program vari-
ables. This is similar to the traditional record-at-a-time file processing. When the last row
has been processed, the cursor is released with the CLOSE statement. Example E3 displays
the SSN of employees whose salary is greater than their supervisor’s salary.

£3:

DECLARE
emp_salary NUMBER;
emp_super_salary NUMBER:
emp_ssn CHAR (9)};
emp_superssn CHAR (9);
CURSOR salary_cursor IS

-t

340 ~ Chapter 10 / Examples of Relational Database Management Systems

SELECT ssn, salary, superssn FROM employee;
BEGIN
OPEN salary_cursor;

LOOP
FETCH salary_cursor INTO emp_ssn, emp_salary, emp_superssn;
EXIT WHEN salary.cursor#NOTFQUND;

IF emp_superssn is NOT NULL THEN
SELECT salary INTO emp_super_salary
FROM employee
WHERE ssh = emp_superssn;

IF emp_saiary > emp_super_salary THEN
dbms_output. put_Tline(emp_ssn);
END IF;
END IF;
END LOOP;
IF salary_cursor¥ISOPEN THEN CLOSE salary_cursor;

EXCEPTION
WHEN NOQ_DATA_FOUND THEN
dbms_output.put_Tine (‘Errors with ssn * |} emp_ssn);
IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

END;

In the above example, the SALARY_CURSOR loops through the entire employee table
until the cursor fetches no further rows. The exception part handles the situation where
an incorrect supervisor ssn may be assigned to an employee. The %NOTFOUND is one of
the four cursor attributes, which are the following:

* %ISOPEN returns TRUE if the cursor is already open.

* 9%FOUND retutns TRUE if the last FETCH returned a row, and returns FALSE if the last
FETCH failed to returh a row,

* %NOTFOUND is the logical opposite of %FOUND.
* %ROWCOUNT yields the number of rows fetched.

As a hinal example, E4 shows a program segment that gets a list of all the employees,
increments each employee’s salary by 10 percent, and displays the old and the new salary.

E4:

DECLARE
v_fname employee.fname¥TYPE;
v_minit employee.minit%TYPE;
v_Tname employee. Tname%TYPE;
v_address employee.address%TYPE;
v_salary employee.salary%TYPE;

CURSOR EMP IS |
SELECT ssn, thame, minit, 1name, salary
FROM employee;

BEGIN
OPEN. EMP ;

LGOP
FETCH EMP INTO v_ssn, v_fname, v_mintt, v_Iname,
v_salary ; .
EXIT WHEN EMP%NOTFOUND;

dbms_output.putline(*SSN:* || v_ssn {| ‘01d salary '
fl v.salary);

{iPDATE employea

SET salary = salary*1.1

WHERE ssh = v_ssn;

COMMIT;

dbms_output.putline(SSN:”> || v_ssn || * New salary :’
{] v_salary*1.1);

END LOOP;
CLOSE EMP;

EXCEPTION

WHEN OTHERS

dbms_output.put_line {‘Error Detected’);
END:

